AI&BigData/Deep Learning
Lab09-1. NN for XOR
eunguru
2018. 4. 27. 00:04
NN for XOR
1. XOR 문제 해결
XOR
1) Logistic regression으로 문제 해결하기: 해결 불가능
소스코드
import tensorflow as tf import numpy as np x_data = np.array([[0,0], [0,1], [1,0], [1,1]], dtype=np.float32) y_data = np.array([[0], [1], [1], [0]], dtype=np.float32) X = tf.placeholder(tf.float32) Y = tf.placeholder(tf.float32) W = tf.Variable(tf.random_normal([2, 1]), name='weight') b = tf.Variable(tf.random_normal([1]), name='bias') # hypothesis using sigmoid hypothesis = tf.sigmoid(tf.matmul(X, W) + b) # cost/loss function cost = -tf.reduce_mean(Y * tf.log(hypothesis) + (1 - Y) * tf.log(1 - hypothesis)) train = tf.train.GradientDescentOptimizer(learning_rate=0.1).minimize(cost) predicted = tf.cast(hypothesis > 0.5, dtype=tf.float32) accuracy = tf.reduce_mean(tf.cast(tf.equal(predicted, Y), dtype=tf.float32)) # lanunch graph with tf.Session() as sess: sess.run(tf.global_variables_initializer()) for step in range(10001): sess.run(train, feed_dict={X: x_data, Y: y_data}) if step % 100 == 0: print("Step: ", step, "Cost: ", sess.run(cost, feed_dict={X: x_data, Y: y_data}), sess.run(W)) # accuracy report h, c, a = sess.run([hypothesis, predicted, accuracy], feed_dict={X: x_data, Y: y_data}) print("\nHypothesis: ", h, "\nCorrect: ", c, "\nAccuracy: ", a)
결과
- 해결불가능 Accuracy가 낮음
Hypothesis: [[0.5] [0.5] [0.5] [0.5]] Correct: [[0.] [0.] [0.] [0.]] Accuracy: 0.5
2. Neural nets으로 XOR문제 해결하기
- Neural nets이 더 deep, wide 해질 수 록 예측이 더 정확해짐
1) Neural nets으로 문제 해결하기: 해결가능
소스코드
(...) X = tf.placeholder(tf.float32, [None, 2]) Y = tf.placeholder(tf.float32, [None, 1]) W1 = tf.Variable(tf.random_normal([2, 2]), name='weight1') b1 = tf.Variable(tf.random_normal([2]), name='bias1') layer1 = tf.sigmoid(tf.matmul(X, W1) + b1) W2 = tf.Variable(tf.random_normal([2, 1]), name='weight2') b2 = tf.Variable(tf.random_normal([1]), name='bias2') hypothesis = tf.sigmoid(tf.matmul(layer1, W2) + b2) (...)
결과
Hypothesis: [[0.01397681] [0.9804833 ] [0.9876809 ] [0.01199236]] Correct: [[0.] [1.] [1.] [0.]] Accuracy: 1.0
2) Deep neural nets
소스코드
(...) X = tf.placeholder(tf.float32, [None, 2]) Y = tf.placeholder(tf.float32, [None, 1]) W1 = tf.Variable(tf.random_normal([2, 10]), name='weight1') b1 = tf.Variable(tf.random_normal([10]), name='bias1') layer1 = tf.sigmoid(tf.matmul(X, W1) + b1) W2 = tf.Variable(tf.random_normal([10, 10]), name='weight2') b2 = tf.Variable(tf.random_normal([10]), name='bias2') layer2 = tf.sigmoid(tf.matmul(layer1, W2) + b2) W3 = tf.Variable(tf.random_normal([10, 10]), name='weight3') b3 = tf.Variable(tf.random_normal([10]), name='bias3') layer3 = tf.sigmoid(tf.matmul(layer2, W3) + b3) W4 = tf.Variable(tf.random_normal([10, 1]), name='weight4') b4 = tf.Variable(tf.random_normal([1]), name='bias4') hypothesis = tf.sigmoid(tf.matmul(layer3, W4) + b4) (...)
결과
Hypothesis: [[0.00126288] [0.9987746 ] [0.9986027 ] [0.00179633]] Correct: [[0.] [1.] [1.] [0.]] Accuracy: 1.0
3. Wide and Deep NN for MNIST
- MNIST에 wide, deep NN을 적용해보았으나 Accuracy가 떨어지는 문제 발생